skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zañudo, Jorge Gómez"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In network control theory, driving all the nodes in the Feedback Vertex Set (FVS) by node-state override forces the network into one of its attractors (long-term dynamic behaviors). The FVS is often composed of more nodes than can be realistically manipulated in a system; for example, only up to three nodes can be controlled in intracellular networks, while their FVS may contain more than 10 nodes. Thus, we developed an approach to rank subsets of the FVS on Boolean models of intracellular networks using topological, dynamics-independent measures. We investigated the use of seven topological prediction measures sorted into three categories—centrality measures, propagation measures, and cycle-based measures. Using each measure, every subset was ranked and then evaluated against two dynamics-based metrics that measure the ability of interventions to drive the system toward or away from its attractors: To Control and Away Control. After examining an array of biological networks, we found that the FVS subsets that ranked in the top according to the propagation metrics can most effectively control the network. This result was independently corroborated on a second array of different Boolean models of biological networks. Consequently, overriding the entire FVS is not required to drive a biological network to one of its attractors, and this method provides a way to reliably identify effective FVS subsets without the knowledge of the network dynamics. 
    more » « less
  2. Thieffry, Denis (Ed.)
    Candida albicans , an opportunistic fungal pathogen, is a significant cause of human infections, particularly in immunocompromised individuals. Phenotypic plasticity between two morphological phenotypes, yeast and hyphae, is a key mechanism by which C . albicans can thrive in many microenvironments and cause disease in the host. Understanding the decision points and key driver genes controlling this important transition and how these genes respond to different environmental signals is critical to understanding how C . albicans causes infections in the host. Here we build and analyze a Boolean dynamical model of the C . albicans yeast to hyphal transition, integrating multiple environmental factors and regulatory mechanisms. We validate the model by a systematic comparison to prior experiments, which led to agreement in 17 out of 22 cases. The discrepancies motivate alternative hypotheses that are testable by follow-up experiments. Analysis of this model revealed two time-constrained windows of opportunity that must be met for the complete transition from the yeast to hyphal phenotype, as well as control strategies that can robustly prevent this transition. We experimentally validate two of these control predictions in C . albicans strains lacking the transcription factor UME6 and the histone deacetylase HDA1 , respectively. This model will serve as a strong base from which to develop a systems biology understanding of C . albicans morphogenesis. 
    more » « less